[筆記] 程式必修課!離散數學與演算法 – 44

從網路課程 程式必修課!離散數學與演算法 來淺嚐一下沒機會在課堂上所學的離散數學與演算法。或許對撰寫程式的效能提昇會有些幫助。
notes-essential-programming-discrete-math-algorithms-python-javascript-1


課程相關資訊

[連結]:https://hiskio.com/courses/1196/lectures/133751

本篇範圍:Chapter 5

請注意:本系列文章為個人對應課程的消化吸收後,所整理出來的內容。換言之,並不一定會包含全部的課程內容,也有可能會添加其他資源來說明。


內容

Euler’s totient function

從 1 開始到 n 的所有正整數,有多少與 n 互質

Φ(2) = 1 -> 因為 [1,2] = 1,也只有這一組
Φ(5) = 4 -> 有 [1,5]、[2,5]、[3,5]、[4,5] 共 4 組
n 越大,理論上Φ(n) 越大;n 為質數的話,那 Φ(n) = n-1


系列文章

  • [筆記] 程式必修課!離散數學與演算法 – 9
  • [筆記] 程式必修課!離散數學與演算法 – 8
  • [筆記] 程式必修課!離散數學與演算法 – 7
  • [筆記] 程式必修課!離散數學與演算法 – 6
  • [筆記] 程式必修課!離散數學與演算法 – 5
  • [筆記] 程式必修課!離散數學與演算法 – 47
  • [筆記] 程式必修課!離散數學與演算法 – 46
  • [筆記] 程式必修課!離散數學與演算法 – 45
  • [筆記] 程式必修課!離散數學與演算法 – 43
  • [筆記] 程式必修課!離散數學與演算法 – 42
  • [筆記] 程式必修課!離散數學與演算法 – 41
  • [筆記] 程式必修課!離散數學與演算法 – 40
  • [筆記] 程式必修課!離散數學與演算法 – 4
  • [筆記] 程式必修課!離散數學與演算法 – 39
  • [筆記] 程式必修課!離散數學與演算法 – 38
  • [筆記] 程式必修課!離散數學與演算法 – 37
  • [筆記] 程式必修課!離散數學與演算法 – 36
  • [筆記] 程式必修課!離散數學與演算法 – 35
  • [筆記] 程式必修課!離散數學與演算法 – 34
  • [筆記] 程式必修課!離散數學與演算法 – 33
  • [筆記] 程式必修課!離散數學與演算法 – 32
  • [筆記] 程式必修課!離散數學與演算法 – 31
  • [筆記] 程式必修課!離散數學與演算法 – 30
  • [筆記] 程式必修課!離散數學與演算法 – 3
  • [筆記] 程式必修課!離散數學與演算法 – 29
  • [筆記] 程式必修課!離散數學與演算法 – 28
  • [筆記] 程式必修課!離散數學與演算法 – 27
  • [筆記] 程式必修課!離散數學與演算法 – 26
  • [筆記] 程式必修課!離散數學與演算法 – 25
  • [筆記] 程式必修課!離散數學與演算法 – 24
  • [筆記] 程式必修課!離散數學與演算法 – 23
  • [筆記] 程式必修課!離散數學與演算法 – 22
  • [筆記] 程式必修課!離散數學與演算法 – 21
  • [筆記] 程式必修課!離散數學與演算法 – 20
  • [筆記] 程式必修課!離散數學與演算法 – 2
  • [筆記] 程式必修課!離散數學與演算法 – 19
  • [筆記] 程式必修課!離散數學與演算法 – 18
  • [筆記] 程式必修課!離散數學與演算法 – 17
  • [筆記] 程式必修課!離散數學與演算法 – 16
  • [筆記] 程式必修課!離散數學與演算法 – 15
  • [筆記] 程式必修課!離散數學與演算法 – 14
  • [筆記] 程式必修課!離散數學與演算法 – 13
  • [筆記] 程式必修課!離散數學與演算法 – 12
  • [筆記] 程式必修課!離散數學與演算法 – 11
  • [筆記] 程式必修課!離散數學與演算法 – 10
  • [筆記] 程式必修課!離散數學與演算法 – 1
  • 按讚加入粉絲團

    延伸閱讀