[筆記] 程式必修課!離散數學與演算法 – 15

從網路課程 程式必修課!離散數學與演算法 來淺嚐一下沒機會在課堂上所學的離散數學與演算法。或許對撰寫程式的效能提昇會有些幫助。
notes-essential-programming-discrete-math-algorithms-python-javascript-1


課程相關資訊

[連結]:https://hiskio.com/courses/1196/lectures/133670

本篇範圍:Chapter 4

請注意:本系列文章為個人對應課程的消化吸收後,所整理出來的內容。換言之,並不一定會包含全部的課程內容,也有可能會添加其他資源來說明。


內容

Propositional & Predicate WFF ( well-formed formula )

與 Statement 不同的點在於:

Propositional & Predicate WFF 預設是沒有 Domain 的。換言之,你需要先行定義 Domain 是什麼,才能判定 Propositional & Predicate WFF 為 True 還是 False

舉例

( P -> Q ) ^ Q :這是一個 Statement。它為 True/False 是取決於 P 和 Q 本身

(∀x)( P(x) -> Q(x) ) ^ (∀y)Q(y):這是一個 Predicate WFF,其結果為 True/False 是無法判定的。你需要先行定義 x 和 y 是什麼,才能知道結果


系列文章

  • [筆記] 程式必修課!離散數學與演算法 – 9
  • [筆記] 程式必修課!離散數學與演算法 – 8
  • [筆記] 程式必修課!離散數學與演算法 – 7
  • [筆記] 程式必修課!離散數學與演算法 – 6
  • [筆記] 程式必修課!離散數學與演算法 – 5
  • [筆記] 程式必修課!離散數學與演算法 – 4
  • [筆記] 程式必修課!離散數學與演算法 – 32
  • [筆記] 程式必修課!離散數學與演算法 – 31
  • [筆記] 程式必修課!離散數學與演算法 – 30
  • [筆記] 程式必修課!離散數學與演算法 – 3
  • [筆記] 程式必修課!離散數學與演算法 – 29
  • [筆記] 程式必修課!離散數學與演算法 – 28
  • [筆記] 程式必修課!離散數學與演算法 – 27
  • [筆記] 程式必修課!離散數學與演算法 – 26
  • [筆記] 程式必修課!離散數學與演算法 – 25
  • [筆記] 程式必修課!離散數學與演算法 – 24
  • [筆記] 程式必修課!離散數學與演算法 – 23
  • [筆記] 程式必修課!離散數學與演算法 – 22
  • [筆記] 程式必修課!離散數學與演算法 – 21
  • [筆記] 程式必修課!離散數學與演算法 – 20
  • [筆記] 程式必修課!離散數學與演算法 – 2
  • [筆記] 程式必修課!離散數學與演算法 – 19
  • [筆記] 程式必修課!離散數學與演算法 – 18
  • [筆記] 程式必修課!離散數學與演算法 – 17
  • [筆記] 程式必修課!離散數學與演算法 – 16
  • [筆記] 程式必修課!離散數學與演算法 – 14
  • [筆記] 程式必修課!離散數學與演算法 – 13
  • [筆記] 程式必修課!離散數學與演算法 – 12
  • [筆記] 程式必修課!離散數學與演算法 – 11
  • [筆記] 程式必修課!離散數學與演算法 – 10
  • [筆記] 程式必修課!離散數學與演算法 – 1
  • 按讚加入粉絲團