[筆記] 程式必修課!離散數學與演算法 – 35

從網路課程 程式必修課!離散數學與演算法 來淺嚐一下沒機會在課堂上所學的離散數學與演算法。或許對撰寫程式的效能提昇會有些幫助。
notes-essential-programming-discrete-math-algorithms-python-javascript-1


課程相關資訊

[連結]:https://hiskio.com/courses/1196/lectures/133736

本篇範圍:Chapter 5

請注意:本系列文章為個人對應課程的消化吸收後,所整理出來的內容。換言之,並不一定會包含全部的課程內容,也有可能會添加其他資源來說明。


內容

Contradition – 矛盾證明

先做錯誤假設,因為證明此假設矛盾,所以原始假設的反向為真。這是一個 indirect proof 非直接證明

舉例:√2 是一個無理數。

若 √2  = a/b 是一個有理數,則 a,b ∈ Z, gcd(a,b) = 1。gcd 為最大公因數

1. 2b^2 = a^2 因此 a^2 為偶數 -> a 為偶數
2. let a = 2i, i∈ Z,則 b^2 = 2i^2 ,因此 b^2 為偶數 -> b 為偶數
3. 由於 a,b 為偶數,則 gcd(a,b) = 2 不等於 1。因此與一開始的假設不符

所以 √2 是一個無理數


系列文章

  • [筆記] 程式必修課!離散數學與演算法 – 9
  • [筆記] 程式必修課!離散數學與演算法 – 8
  • [筆記] 程式必修課!離散數學與演算法 – 7
  • [筆記] 程式必修課!離散數學與演算法 – 6
  • [筆記] 程式必修課!離散數學與演算法 – 5
  • [筆記] 程式必修課!離散數學與演算法 – 4
  • [筆記] 程式必修課!離散數學與演算法 – 38
  • [筆記] 程式必修課!離散數學與演算法 – 37
  • [筆記] 程式必修課!離散數學與演算法 – 36
  • [筆記] 程式必修課!離散數學與演算法 – 34
  • [筆記] 程式必修課!離散數學與演算法 – 33
  • [筆記] 程式必修課!離散數學與演算法 – 32
  • [筆記] 程式必修課!離散數學與演算法 – 31
  • [筆記] 程式必修課!離散數學與演算法 – 30
  • [筆記] 程式必修課!離散數學與演算法 – 3
  • [筆記] 程式必修課!離散數學與演算法 – 29
  • [筆記] 程式必修課!離散數學與演算法 – 28
  • [筆記] 程式必修課!離散數學與演算法 – 27
  • [筆記] 程式必修課!離散數學與演算法 – 26
  • [筆記] 程式必修課!離散數學與演算法 – 25
  • [筆記] 程式必修課!離散數學與演算法 – 24
  • [筆記] 程式必修課!離散數學與演算法 – 23
  • [筆記] 程式必修課!離散數學與演算法 – 22
  • [筆記] 程式必修課!離散數學與演算法 – 21
  • [筆記] 程式必修課!離散數學與演算法 – 20
  • [筆記] 程式必修課!離散數學與演算法 – 2
  • [筆記] 程式必修課!離散數學與演算法 – 19
  • [筆記] 程式必修課!離散數學與演算法 – 18
  • [筆記] 程式必修課!離散數學與演算法 – 17
  • [筆記] 程式必修課!離散數學與演算法 – 16
  • [筆記] 程式必修課!離散數學與演算法 – 15
  • [筆記] 程式必修課!離散數學與演算法 – 14
  • [筆記] 程式必修課!離散數學與演算法 – 13
  • [筆記] 程式必修課!離散數學與演算法 – 12
  • [筆記] 程式必修課!離散數學與演算法 – 11
  • [筆記] 程式必修課!離散數學與演算法 – 10
  • [筆記] 程式必修課!離散數學與演算法 – 1
  • 按讚加入粉絲團

    延伸閱讀